Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 217: 118334, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35397370

RESUMEN

The input of nitrate and other agricultural pollutants in higher-order streams largely derives from first-order streams. The streambed as the transition zone between groundwater and stream water has a decisive impact on the attenuation of such pollutants. This reactivity is not yet well understood for lower-order agricultural streams, which are often anthropogenically altered and lack the streambed complexity allowing for extensive hyporheic exchange. Reactive hot spots in such streambeds have been hypothesized as a function of hydrology, which controls the local gaining (groundwater exfiltration) or losing (infiltration) of stream water. However, streambed microbial communities and activities associated with such reactive zones remain mostly uncharted. In this study, sediments of a first-order agriculturally impacted stream in southern Germany were investigated. Along with a hydraulic dissection of distinct gaining and losing reaches of the stream, community composition and the abundance of bacterial communities in the streambed were investigated using PacBio long-read sequencing of bacterial 16S rRNA gene amplicons, and qPCR of bacterial 16S rRNA and denitrification genes (nirK and nirS). We show that bidirectional water exchange between groundwater and the stream represents an important control for sediment microbiota, especially for nitrate-reducing populations. Typical heterotrophic denitrifiers were most abundant in a midstream net losing section, while up- and downstream net gaining sections were associated with an enrichment of sulfur-oxidizing potential nitrate reducers affiliated with Sulfuricurvum and Thiobacillus spp. Dispersal-based community assembly was found to dominate such spots of groundwater exfiltration. Our results indicate a coupling of N- and S-cycling processes in the streambed of an agricultural first-order stream, and a prominent control of microbiology by hydrology and hydrochemistry in situ. Such detailed local heterogeneities in exchange fluxes and streambed microbiomes have not been reported to date, but seem relevant for understanding the reactivity of lower-order streams.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Microbiota , Contaminantes Ambientales/análisis , Agua Subterránea/química , Nitratos/análisis , ARN Ribosómico 16S , Agua/análisis
2.
Pest Manag Sci ; 78(6): 2550-2559, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35322519

RESUMEN

BACKGROUND: Analytical constraints complicate environmental monitoring campaigns of the herbicide glyphosate and its major degradation product aminomethylphosphonic acid (AMPA): their strong sorption to soil minerals requires harsh extraction conditions. Coextracted matrix compounds impair downstream analysis and must be removed before analysis. RESULTS: A new extraction method combined with subsequent capillary electrophoresis-mass spectrometry for derivatization-free analysis of glyphosate and AMPA in soil and sediment was developed and applied to a suite of environmental samples. It was compared to three extraction methods from literature. We show that no extraction medium reaches 100% recovery. The new phosphate-supported alkaline extraction method revealed (1) high recoveries of 70-90% for soils and aquatic sediments, (2) limits of detections below 20 µg kg-1 , and (3) a high robustness, because impairing matrix components (trivalent cations and humic acids) were precipitated prior to the analysis. Soil and sediment samples collected around Tübingen, Germany, revealed maximum glyphosate and AMPA residues of 80 and 2100 µg kg-1 , respectively, with residues observed along a core of lake sediments. Glyphosate and/or AMPA were found in 40% of arable soils and 57% of aquatic sediment samples. CONCLUSION: In this work, we discuss soil parameters that influence (de)sorption and thus extraction. From our results we conclude that residues of glyphosate in environmental samples are easily underestimated. With its possible high throughput, the method presented here can resolve current limitations in monitoring campaigns of glyphosate by addressing soil and aquatic sediment samples with critical sorption characteristics.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Monitoreo del Ambiente , Glicina/análogos & derivados , Herbicidas/análisis , Fosfatos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/análisis , Glifosato
3.
Sci Total Environ ; 806(Pt 3): 151268, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710407

RESUMEN

PAHs (polycyclic aromatic hydrocarbons) in urban areas are usually bound to particles. Concentrations are different in different compartments (airborne particles, street dust, suspended sediments in rivers and channels). This study follows concentrations of PAHs from particles in air to street dust and finally suspended sediments in the city of Tehran, Iran compared to Tübingen, Germany. Data sets are based on own investigations (PAHs on suspended sediments), or taken from literature studies (PAHs in street dust and airborne particles). Based on a cross-comparison of concentrations of PAHs on particles, and their congener distribution patterns, the occurrence, interrelation (exchange and mixing processes), as well as possible dilution processes among PAHs in the different particle classes are disentangled. Results show that for Tehran and Tübingen PAHs in airborne particles are very high (in the range of 500 mg kg-1). However, in street dust and suspended sediments PAHs concentrations on particles are around 100 times lower. Surprisingly concentrations in street dust and suspended sediments are 5 to 10 times lower in Tehran (average 0.5 mg kg-1) than in Tübingen (average 5 mg kg-1). Since it is unlikely that PAHs emissions are lower in the Tehran megacity, an effective dilution of the atmospheric signal by uncontaminated (background) particles is hypothesized. Uncontaminated particles may stem from wind erosion of bare surfaces, construction and sand mining sites or even dust from the desert areas, which are frequent in arid climate in Tehran.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , Irán , Material Particulado , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos
4.
Environ Sci Technol ; 55(8): 5106-5116, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33759504

RESUMEN

Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Agua Dulce , Sedimentos Geológicos , Material Particulado/análisis , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 741: 139514, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32887017

RESUMEN

Organic micropollutants enter rivers mainly with discharges of wastewater treatment plants (WWTP) and pose a risk to aquatic ecosystems and water quality. A considerable knowledge gap exists for disentangling overlapping processes and driving conditions that control the fate of these pollutants. Thus, the aim of this study was to identify the driving parameters for attenuation of selected pharmaceuticals (carbamazepine, diclofenac, tramadol and venlafaxine) under field conditions. The presented study was performed at a small river (Ammer River, mean discharge 0.87 m3 s-1) which is hydrologically complex due to karstification, numerous artificial discharges, and engineered modifications of the channel. We applied a Lagrangian sampling scheme at two sequential river reaches. In general, for the investigated compounds and over the length of the tested reaches, the absolute net attenuation representative for 24 h was low (≤ 23% net attenuation), yet calculated half-lives were comparable to literature. Photodegradation is specifically relevant for the first river reach characterized by a higher net attenuation of the photosensitive compound diclofenac (14.5% ±11.3%) compared to the second section (9.8% ±13.7%). This is likely due to a spatial difference in canopy shading, which is supported by significant correlations (R2 ≥ 0.8) of the temporally changing 'temperature' and 'solar radiation' with time-specific degradation rate constants of photosensitive compounds for consecutive hourly water parcels. In general, the presented spatially and temporally resolved approach is a suitable tool to determine the attenuation of organic micropollutants and to narrow down the interpretation of net attenuation to a few reasonable processes.


Asunto(s)
Ríos , Contaminantes Químicos del Agua/análisis , Ecosistema , Monitoreo del Ambiente , Aguas Residuales/análisis
6.
Environ Toxicol Chem ; 39(7): 1382-1391, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347587

RESUMEN

Organic micropollutants of anthropogenic origin in river waters may impair aquatic ecosystem health and drinking water quality. To evaluate micropollutant fate and turnover on a catchment scale, information on input source characteristics as well as spatial and temporal variability is required. The influence of tributaries from agricultural and urban areas and the input of wastewater were investigated by grab and Lagrangian sampling under base flow conditions within a 7.7-km-long stretch of the Ammer River (southwest Germany) using target screening for 83 organic micropollutants and 4 in vitro bioassays with environmentally relevant modes of action. In total, 9 pesticides and transformation products, 13 pharmaceuticals, and 6 industrial and household chemicals were detected. Further, aryl hydrocarbon receptor induction, peroxisome proliferator-activated receptor activity, estrogenicity, and oxidative stress response were measured in the river. The vast majority of the compounds and mixture effects were introduced by the effluent of a wastewater-treatment plant, which contributed 50% of the total flow rate of the river on the sampling day. The tributaries contributed little to the overall load of organic micropollutants and mixture effects because of their relatively low discharge but showed a different chemical and toxicological pattern from the Ammer River, though a comparison to effect-based trigger values pointed toward unacceptable surface water quality in the main stem and in some of the tributaries. Chemical analysis and in vitro bioassays covered different windows of analyte properties but reflected the same picture. Environ Toxicol Chem 2020;39:1382-1391. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Monitoreo del Ambiente , Ríos/química , Contaminantes Químicos del Agua/análisis , Ecosistema , Agua Dulce/análisis , Alemania , Plaguicidas/análisis , Factores de Tiempo , Pruebas de Toxicidad , Aguas Residuales/química , Purificación del Agua , Calidad del Agua
7.
J Environ Qual ; 48(5): 1325-1335, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31589730

RESUMEN

Transitional ecotones such as vegetated buffer strips, stream banks, and streambeds retain phosphorus (P) in the immediate surroundings of farmland. Yet the fate of P in these ecotones remains unclear. Our objectives were to (i) test the difference in the P pool composition of soil and sediment between sites surrounded by agriculture and forestry and (ii) test whether specific P pools differ among transitional ecotones. Phosphorus pools (by a modified Hedley fractionation scheme) and the degree of P saturation (DPS) were determined in 33 soil and sediment samples from eight farmland and three forest sites. At farmland sites, total P in soil and sediment was more than twofold higher as compared to forestry sites. The proportion of labile inorganic P (Pi) and the DPS were significantly larger in transitional ecotones close to farmland. We further used normalized values for comparing the respective ecotones at the sites. The deviation of each transitional ecotone relative to the respective site average revealed that the normalized total P concentration and proportions of labile and moderately labile Pi were significantly smaller in bed sediment adjacent to farmland as compared to respective stream bank and buffer strip soil, whereas the stable Ca-Pi proportion was larger. The results reflected a decreased Pi sorption capacity in combination with Pi desorption and transfer of Pi into secondary Ca-Pi minerals in bed sediment. In summary, the influence of agriculture increases labile P pools in soil and sediment, which are then subject to a succession of dynamic processes resulting in a partial loss of Pi to the aqueous phase as well as fixation of Pi in the Ca-Pi pool.


Asunto(s)
Fósforo , Suelo , Agricultura , Monitoreo del Ambiente , Ríos
8.
Environ Sci Pollut Res Int ; 26(28): 28633-28649, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31385254

RESUMEN

Organic micropollutants in rivers are emitted via diffuse and point sources like from agricultural practice or wastewater treatment plants (WWTP). Extensive laboratory and field experiments have been conducted to understand emissions and fate of these pollutants in freshwaters. Nevertheless, data is often difficult to compare since common protocols for appropriate approaches are largely missing. Thus, interpretation of the observed changes in substance concentrations and of the underlying fate of these compounds downstream of the chemical input into the river is still challenging. To narrow this research gap, (1) process understanding and (2) measurement approaches for field-based investigations are critically reviewed in this article. The review includes, on the one hand, processes that change the volume of the water (hydrological processes) and, on the other hand, processes that affect the substance mass within the water (distribution and transformation). Environmental boundary conditions for the purpose of better comparability of different attenuation studies, as well as promising state-of-the-art measurement approaches from different disciplines, are presented. This overview helps to develop a tailored procedure to assess turnover mechanisms of organic micropollutants under field conditions. In this respect, further research needs to standardize interdisciplinary approaches to increase the informative value of collected data.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agricultura , Agua Dulce , Hidrología , Ríos/química , Aguas Residuales/química
10.
Sci Total Environ ; 656: 1250-1260, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30625655

RESUMEN

Interpreting the fate of wastewater contaminants in streams is difficult because their inputs vary in time and several processes synchronously affect reactive transport. We present a method to disentangle the various influences by performing a conservative-tracer test while sampling a stream section at various locations for chemical analysis of micropollutants. By comparing the outflow concentrations of contaminants with the tracer signal convoluted by the inflow time series, we estimated reaction rate coefficients and calculated the contaminant removal along a river section. The method was tested at River Steinlach, Germany, where 38 contaminants were monitored. Comparing day-time and night-time experiments allowed distinguishing photo-dependent degradation from other elimination processes. While photo-dependent degradation showed to be highly efficient for the removal of metroprolol, bisoprolol, and venlafaxine, its impact on contaminant removal was on a similar scale to the photo-independent processes when averaged over 24 h. For a selection of compounds analyzed in the present study, bio- and photodegradation were higher than in previous field studies. In the Steinlach study, we observed extraordinarily effective removal processes that may be due to the higher proportion of treated wastewater, temperature, DOC and nitrate concentrations, but also a higher surface to volume ratio from low flow conditions that favorizes photodegradation through the shallow water column and a larger transient storage than observed in comparable studies.

11.
Sci Total Environ ; 647: 645-652, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30092520

RESUMEN

Transport of hydrophobic pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals is often facilitated by suspended sediment particles, which are typically mobilized during high discharge events. Suspended sediments thus represent a means of transport for particle related pollutants within river reaches and may represent a suitable proxy for average pollutant concentrations estimation in a river reach or catchment. In this study, multiple high discharge/turbidity events were sampled at high temporal resolution in the Globaqua River Basins Sava (Slovenia, Serbia), Adige (Italy), and Evrotas (Greece) and analysed for persistent organic pollutants such as PAHs (polycyclic aromatic hydrocarbons) or PCBs (polychlorinated biphenyls) and heavy metals. For comparison, river bed sediment samples were analysed as well. Further, results are compared to previous studies in contrasting catchments in Germany, Iran, Spain, and beyond. Overall results show that loadings of suspended sediments with pollutants are catchment-specific and relatively stable over time at a given location. For PAHs, loadings on suspended particles mainly correlate to urban pressures (potentially diluted by sediment mass fluxes) in the rivers, whereas metal concentrations mainly display a geogenic origin. By cross-comparison with known urban pressure/sediment yield relationships (e.g. for PAHs) or soil background values (for metals) anthropogenic impact - e.g. caused by industrial activities - may be identified. Sampling of suspended sediments gives much more reliable results compared to sediment grab samples which typically show a more heterogeneous contaminant distribution. Based on mean annual suspended sediment concentrations and distribution coefficients of pollutants the fraction of particle facilitated transport versus dissolved fluxes can be calculated.

12.
Environ Sci Eur ; 30(1): 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29984126

RESUMEN

BACKGROUND: Rivers receive water and associated organic micropollutants from their entire catchment, including from urban, agricultural and natural sources, and constitute an important environmental component for catalyzing pollutant turnover. Environmental removal processes were extensively investigated under laboratory conditions in the past but there is still a lack of information on how organic micropollutants attenuate on the catchment scale. The aim of this study was to describe the chemical and toxicological profile of a 4th order river and to characterize in-stream processes. We propose indicator chemicals and indicator in vitro bioassays as screening methods to evaluate micropollutant input and transport and transformation processes of the chemical burden in a river. Carbamazepine and sulfamethoxazole were selected as indicators for dilution processes and the moderately degradable chemicals tramadol and sotalol as indicators for potential in-stream attenuation processes. The battery of bioassays covers seven environmentally relevant modes of action, namely estrogenicity, glucocorticogenic activity, androgenicity progestagenic activity and oxidative stress response, as well as activation of the peroxisome proliferator-activated receptor and the aryl hydrocarbon receptor, using the GeneBLAzer test battery and the AhR-CALUX and AREc32 assays. RESULTS: Both approaches, targeted chemical analysis and in vitro bioassays, identified a wastewater treatment plant (WWTP) as a major input source of organic micropollutants that dominantly influenced the water quality of the river. Downstream of the WWTP the amount of detected chemicals and biological effects decreased along the river flow. The organic indicator chemicals of known degradability uncovered dilution and potential loss processes in certain river stretches. The average cytotoxic potency of the river water decreased in a similar fashion as compounds of medium degradability such as the pharmaceutical sotalol. CONCLUSIONS: This study showed that the indicator chemical/indicator bioassay approach is suitable for identifying input sources of a mixture of organic micropollutants and to trace changes in the water quality along small rivers. This method forms the necessary basis for evaluating the natural attenuation processes of organic micropollutants on a catchment scale, especially when combined with enhanced sampling strategies in future studies.

13.
Sci Total Environ ; 640-641: 315-326, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859445

RESUMEN

This work presents a post-event survey study, addressing the geomorphic response and large wood budget of two torrents, Grimmbach and Orlacher Bach, in southwestern Germany that were affected by a flash flood on May 29, 2016. During the event, large amounts of wood clogged and damaged a bridge of a cycling path at the outlet of the Grimmbach, while the town of Braunsbach was devastated by discharge and material transported along the Orlacher Bach. The severity of the event in these two small catchments (30.0 km2 and 5.95 km2, respectively) is remarkable in basins with a relatively low average slope (10.7 and 12.0%, respectively). In order to gain a better understanding of the driving forces during this flood event an integrated approach was applied including (i) an estimate of peak discharges, (ii) an analysis of changes in channel width by comparing available aerial photographs before the flood with a post-flood aerial surveys with an Unmanned Aerial Vehicle and validation with field observations, (iii) a detailed mapping of landslides and analysis of their connectivity with the channel network and finally (iv) an analysis of the amounts of large wood recruited and deposited in the channel. The morphological changes in the channels can be explained by hydraulic parameters, such as stream power and unit stream power, and by morphological parameters such as the valley confinement. This is similar for LW recruitment amounts and volume of exported LW since most of it comes from the erosion of the valley floor. The morphological changes and large wood recruitment and deposit are in the range of studied mountain rivers. Both factors thus need to be considered for mapping and mitigating flash flood hazards also in this kind of low range mountains.


Asunto(s)
Inundaciones , Ríos/química , Madera , Alemania , Movimientos del Agua
14.
PLoS One ; 13(1): e0191314, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29342204

RESUMEN

Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).


Asunto(s)
Monitoreo del Ambiente , Metales/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Suspensiones
15.
Sci Total Environ ; 601-602: 636-645, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28577399

RESUMEN

The contamination of riverine sediments and suspended matter with hydrophobic pollutants is typically associated with urban land use. However, it is rarely related to the sediment supply of the watershed, because sediment yield data are often missing. We show for a suite of watersheds in two regions of Germany with contrasting land use and geology that the contamination of suspended particles with polycyclic aromatic hydrocarbons (PAH) can be explained by the ratio of inhabitants residing within the watershed and the watershed's sediment yield. The modeling of sediment yields is based on the Revised Universal Soil Loss Equation (RUSLE2015, Panagos et al., 2015) and the sediment delivery ratio (SDR). The applicability of this approach is demonstrated for watersheds ranging in size from 1.4 to 3000km2. The approach implies that the loading of particles with PAH can be assumed as time invariant. This is indicated by additional long-term measurements from sub-watersheds of the upper River Neckar basin, Germany. The parsimonious conceptual approach allows for reasonable predictions of the PAH loading of suspended sediments especially at larger scales. Our findings may easily be used to estimate the vulnerability of river systems to particle-associated urban pollutants with similar input pathways as the PAH or to indicate if contaminant point sources such as sites of legacy pollution exist in a river basin.

16.
Sci Total Environ ; 592: 215-227, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28319709

RESUMEN

Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater.


Asunto(s)
Ecosistema , Agua Subterránea , Microbiología del Agua , Recursos Hídricos
17.
Environ Monit Assess ; 188(2): 111, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26801154

RESUMEN

As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered.


Asunto(s)
Agricultura , Monitoreo del Ambiente/métodos , Alemania , Nitratos/análisis , Óxidos de Nitrógeno , Ríos , Estaciones del Año
18.
Sci Total Environ ; 540: 444-54, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283620

RESUMEN

Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/análisis
19.
Sci Total Environ ; 490: 191-8, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24858216

RESUMEN

Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Inundaciones/estadística & datos numéricos , Sedimentos Geológicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Movimientos del Agua
20.
Environ Pollut ; 172: 155-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23063990

RESUMEN

Water quality of rivers depends often on the degree of urbanization and the population density in the catchment. This study shows results of a monitoring campaign of total concentration of polycyclic aromatic hydrocarbons (PAHs) and suspended particles in water samples in adjacent catchments in Southern Germany with similar geology and climate but different degrees of urbanization. Defined linear relationships between total concentrations of PAHs in water and the amount of suspended solids were obtained indicating predominance of particle-facilitated transport. The slopes of these regressions correspond to the average contamination of suspended particles (C(sus)) and thus comprise a very robust measure of sediment pollution in a river. For the first time, we can show that C(sus) is distinct in the different catchments and correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Alemania , Ríos/química , Urbanización , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...